BMO is the intersection of two translates of dyadic BMO
نویسندگان
چکیده
Let T be the unit circle on R2. Denote by BMO(T) the classical BMO space and denote by BMOD(T) the usual dyadic BMO space on T. Then, for suitably chosen δ ∈R, we have ‖φ‖BMO(T) ‖φ‖BMOD(T) + ‖φ(· − 2δπ)‖BMOD(T), ∀φ ∈ BMO(T). To cite this article: T. Mei, C. R. Acad. Sci. Paris, Ser. I 336 (2003). 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Résumé BMO est l’intersection de deux translatés de BMO dyadique. Soit T le cercle unité dans R2. On note BMO(T) l’espace BMO classique et l’on note BMOD(T) l’espace BMO dyadique usuel sur T. Pour certaines valeurs de δ ∈ R, nous montrons que l’espace BMO(T) coïncide avec l’intersection de BMOD(T) et du translaté par δ de BMOD(T), en d’autres termes que l’on a ‖φ‖BMO(T) ‖φ‖BMOD(T) + ‖φ(· − 2δπ)‖BMOD(T), ∀φ ∈ BMO(T). Pour citer cet article : T. Mei, C. R. Acad. Sci. Paris, Ser. I 336 (2003). 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
منابع مشابه
ar X iv : m at h / 03 04 41 7 v 2 [ m at h . C A ] 1 6 Ju n 20 03 BMO is the intersection of two translates of dyadic
Let T be the unit circle on R. Denote by BMO(T) the classical BMO space and denote by BMOD(T) the usual dyadic BMO space on T. Then, for suitably chosen δ ∈ R, we have ‖φ‖BMO(T) ⋍ ‖φ‖BMOD(T) + ‖φ(· − 2δπ)‖BMOD(T) ,∀φ ∈ BMO(T) To cite this article: C. R. Acad. Sci. Paris, Ser. I 336 (2003).
متن کاملDyadic structure theorems for multiparameter function spaces
We prove that the multiparameter (product) space BMO of functions of bounded mean oscillation can be written as the intersection of finitely many dyadic product BMO spaces, with equivalent norms, generalizing the one-parameter result of T. Mei. We establish the analogous dyadic structure theorems for the space VMO of functions of vanishing mean oscillation, for Ap weights, for reverse-Hölder we...
متن کاملar X iv : 0 80 5 . 06 20 v 1 [ m at h . FA ] 6 M ay 2 00 8 EMBEDDINGS BETWEEN OPERATOR - VALUED DYADIC BMO SPACES
We investigate a scale of dyadic operator-valued BMO spaces, corresponding to the different yet equivalent characterizations of dyadic BMO in the scalar case. In the language of operator spaces, we investigate different operator space structures on the scalar dyadic BMO space which arise naturally from the different characterisations of scalar BMO. We also give sharp dimensional growth estimate...
متن کاملOperator Valued Hardy Spaces
We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...
متن کاملBMO Space and its relation with wavelet theory
The aim of this paper is a) if Σak2 < ∞ then Σak rk(x) is in BMO that{rk(x)} is Rademacher system. b) P1k=1 ak!nk (x) 2 BMO; 2k nk < 2k+1that f!n(x)g is Walsh system. c) If jakj < 1k then P1k=1 ak!k(x) 2 BMO.
متن کامل